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Abstract. We solve the one-dimensional diffusion equation of nucleons and mesons in the
atmosphere using the semigroup theory. We show that the general solutions become simplified
expressions when we assume a power-law dependence on energy for the p–air inelastic cross
section,σ = σ0E

a and for the primary energy spectrum,N0E
−(γ+1). Our solution is compared

with the hadron fluxes of emulsion chamber data: we find a good consistency with an average
inelasticity around 0.63, with the best fit of the coefficienta = 0.06.

1. Introduction

The semigroups have been successfully applied to the integration of some equations of
physics such as, the Schrödinger equation, the heat conduction equation, and in other
problems of quantum mechanics and quantum eletrodynamics [1]. The purpose of this
paper is to show that the case of the diffusion of hadrons in the atmosphere is another
example that can also be solved by this method.

These diffusion equations have been integrated with the method of the Mellin transform
following the procedure of Landau and Rumer [2] to solve the integro-differential equations
that describe the diffusion of the eletromagnetic cascades in the atmosphere. The solution
thus obtained is represented by a contour integral which only in very few particular cases
can be evaluated exactly.

We have solved these equations recently [3, 4] using the successive approximation
method and we show here that the operational calculus permits us to immediately obtain
the solution of the problem, saving a great amount of labour.

Assuming that the interaction mean-free path of nucleons and pions have the same
power-law dependence on energy [5, 6], the pion interaction mean-free path may be obtained
by multiplying the former by a constant value,λπ(E) = ωπλ(E) [7]. Assuming also, that
the primary energy spectrum of cosmic rays is given by a JACEE energy distribution [8],
we obtain the usual solution [7].

Our solution is also compared with hadron fluxes measured at mountain altitudes using
an arbitary nucleon elasticity distribution [10].
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2. The nucleon diffusion equation

The diffusion of the nucleonic component in the earth’s atmosphere can be described
approximately by the following integro-differential equation

∂N(t, E)

∂t
= −N(t, E)

λ(E)
+
∫ 1

0

N(t, E/η)

λ(E/η)
f (E/η)

dη

η
(1)

with the boundary condition

N(0, E)dE = G(E) dE (2)

which represents the differential spectrum of the primary cosmic ray nucleons at the top of
atmosphere.

In equation (1),λ(E) and η are respectively the interaction mean-free path and the
elasticity coefficient of the nucleons in the atmosphere. The elasticity coefficient is
distributed according tof (η).

About 20 years ago, Castro [9] introduced a symbolic method to solve equation (1) for
the special case ofη andλ constants. He introduced an operation

σ̂N(t, E) = 1

η
N(t, E/η) for η > ηmin > 0 (3)

where the operator̂σ works only on energy,E, and has for dominium the set of positive
function N(t, E), bounded and continuous with respect toE. If we suppose that 1

λ(E)

belongs to the same dominium ofσ̂ and introducing the operator̂A independent oft ,

Â = −
(

1−
∫ 1

0
f (η) dησ̂

)
1

λ(E)
(4)

in equation (1), we obtain the operator equation
∂N

∂t
(t, E) = −ÂN(t, E). (5)

Provided thatÂ is bounded, the solution of this equation is

N(t, E) = e−tÂN(0, E). (6)

The operatorsGt = e−tÂ, for t > 0, are the elements of a semigroup{Gt } [1], with

Gt ·Gr = G(t+r)
Gt=0 = 1I t, r > 0

(7)

whereG0 is the identity operator and̂A are the generators of this semigroup.
The operatorÂ is the sum of two operators,

A1 = − 1

λ(E)
and A2 =

(∫ 1

0
f (η) dησ̂

)
1

λ(E)
.

The operatorsÂ1 and Â2, in general, do not commute and only in the particular case,
λ(E) = λ0 = constant we will have exp(Â1+ Â2) = exp(Â1) exp(Â2).

For the general case we must consider the order of the factors in the development of
the exp(Â1+ Â2), in the power series

Gt =
∞∑
n=0

(−1)n(Â1+ Â2)
n t
n

n!
(8)

with Â1Â2 6= Â2Â1.
Bellandi et al [10] recently used a similar formal operator to solve equation (1).
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3. The meson diffusion equation

The diffusion of mesons ‘m’ in the atmosphere can be written

∂M(t, E)

∂t
= −M(t,E)

λm(E)
+
∫ 1

0

M(t,E/x)

λm(E/x)
fmm(x)

dx

x
+
∫ 1

0

N(t, E/x)

λ(E/x)
fnm(x)

dx

x
(9)

with the boundary condition

M(0, E) = 0 (10)

whereλm(E) is the interaction mean-free path of the meson in the atmosphere;fmm and
fnm are respectively the spectra of the mesons produced in the meson–air nuclei and in the
nucleon–air nuclei interactions, andx is the Feynman variable which for high energy is
approximatelyx ∼= E

E′ (E′ is the primary energy of nucleon or meson).
As in the nucleon case, in order to solve the diffusion equation (9) for the mesons, we

introduce the operators

B̂N =
(∫ 1

0
fnm(x) dx σ̂n

)
1

λ(E)
(11)

and

B̂m = −
(

1−
∫ 1

0
fmm(x) dx σ̂m

)
1

λm(E)
. (12)

BN andBm as defined above operate only on the energy,E, and have for dominium
the set of positive functionsN(t, E) andM(t,E) bounded and continuous with respect to
E, in the range, 0< Emin < ∞. If we suppose that 1

λm(E)
belongs to the same dominium

of σ̂m, the equation (9) takes the following form:

∂M(t, E)

∂t
= B̂mM(t, E)+ B̂nN(t, E). (13)

The formal solution of operator equation (12) that satisfies the boundary condition (10) is

M(t,E) =
∫ t

0
e−(t−z)B̂mB̂nN(z, E)dz. (14)

Similarly the operatorsĤt = e−tB̂m for t > 0, are the elements of a semigroup{Ht }.
The generatorsB̂m of this semigroup are the sum of two operatorsB̂m1 = − 1

λm(E)
and

B̂m2 = (
∫ 1

0 fm(x) dx σ̂m) 1
λm(E)

. These operators as in the nucleon case, in general, do not
commute.

4. Particular case

Taking the cosmic-ray primary energy spectrumN(0, E) = N0E
−(γ+1) [8], and if the

interaction mean-free path for nucleons decreases with energy in the formλ(E) = λ0E
−a

[5], the solutions (6) and (14) will take the simplified expressions as follows.

4.1. Differential nucleon flux

The differential nucleon fluxes can be written

N(t, E) =
∞∑
n=0

(−1)n

n!

(
t

λ(E)

)n
In(γ, a, n)N(0, E) (15)
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Figure 1. Inelastic cross sections of p–air against energy. Data are from [11]M, � and
♦, [12] for ◦. Four full lines are drawn fora = 0.03, 0.04, 0.06 and 0.10 in the formula
σ = 300(E/TeV)a .

with

In(γ, a, n) =
n∏
j=1

(1− 〈ηγ−ja〉) (16)

and

〈ηγ−aj 〉 =
∫ 1

0
f (η) dη ηγ−aj . (17)

If a = 0 we obtain the well known solution forλ independent ofE.
The expression (15) is the same solution that appears in [10].

4.2. Differential meson flux

The meson flux (14) takes the following form

M(t,E) =
∞∑
k=0

∫ t

0
(−1)k

(t − z)k
k!

(
B̂m

1

λm(E)

)k
· BnN(t, E) (18)

whereB̂nN(t, E) is the production rate of secondary mesons ‘m’ by the nucleon–air nuclei
interactions and it is assumed the expression

B̂nN(t, E) =
∞∑
n=0

(−1)n

n!

zn

λ(E)n+1
In(γ, a, n)Znm(γ, a, n)N0E

(γ+1) (19)
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Figure 2. Integral hadron spectrum at 540 g cm−2. (• from [17]). The three lines are drawn
for 〈K〉 = 0.5 with a = 0, 0.06 and 0.10.

whereZnm(γ, a, n) is the energy-weighted spectrum for nucleons interacting with air nuclei
for λ(E) = λ0E

−a, and assume the expression

Znm(γ, a, n) =
∫ 1

0
xγ−(n+1)afnm(x) dx. (20)

If λ(E) and λm(E) have the same power-law dependence on energy [7], and so
λm(E) = ωm(E) with ωm = constant, then the expression (18) takes the form

M(t,E) =
∞∑
k=0

∞∑
n=0

∫ t

0
dz
(−1)k(−1)n

k!n!

(
(t − z)
λm(E)

)k (
z

λ(E)

)n
×Znm(γ, a, n)In(γ, a, n)Imm(γ, a, k, n)N0E

−(γ+1)

λ(E)
(21)

where

Imm(γ, a, k, n) =
k∏
i=1

(1− 〈xγ−a(k+n+1)〉) (22)
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Figure 3. Integral hadron spectrum at 520 g cm−2. (• from [18]). The three lines are drawn
for 〈K〉 = 0.5 with a = 0, 0.06 and 0.10.

with

〈xγ−a(k+n+1)〉 =
∫ 1

0
fmm(x)x

γ−a(k+n+1) dx. (23)

In the special case whena = 0 the expressions (16), (22) and (20) become

In(γ, a, n) = (1− 〈ηγ 〉)n (24)

Imm(γ, a, k, n) = (1− 〈xγ 〉)n (25)

with

〈xγ 〉 =
∫ 1

0
fmm(x)xγ dx (26)

and

Znm =
∫ 1

0
fnm(x)x

γ dx. (27)
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Figure 4. Integral hadron spectrum at 650 g cm−2. (• from [19]). The three lines are drawn
for 〈K〉 = 0.5 with a = 0, 0.06 and 0.10.

So solution (21) reduces to the expression corresponding toλ independent ofE.

M(t,E) = N0E
−(γ+1) Znm

λ

e−t/Lm − e−t/L

1/L− 1/Lm
(28)

whereL andLm are respectively the absorption mean-free path of nucleons and mesons
‘m’ in the atmosphere, withL = λ

1−〈ηγ 〉 andLm = λm
1−〈xγ 〉 .

5. Comparison with experimental data

In order to make a comparison with hadron fluxes measured at mountain altitudes with
emulsion chambers, we need to take into account various elements in addition to the cross
section, like the primary cosmic-ray flux, the distribution of elasticity, theγ -ray inelasticity
and the energy spectra in the laboratory system for the secondary mesons.

We shall make the following simple considerations on each element.
(a) Primary cosmic rays: at the atmospheric top, the majority of incoming cosmic

ray particles are protons. The number of nuclei cannot, however, be neglegible in order
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Figure 5. Integral hadron spectrum at 540 g cm−2. (• from [17]). The full line represents the
calculated flux for〈K〉 = 0.5 and the broken line is the same flux for〈K〉 = 0.63. Both lines
are fora = 0.06.

to study the hadron flux. Bhattacharyya [8] analysed experimental data of balloon-
borne experiments and reported the nucleon flux at the top of the atmosphere to be
2.237E−2.7 (cm2 s sr GeV/nucleon)−1.

(b) Nucleon elasticity distribution: we assume for the nucleon elasticity distribution the
following arbitrary form [10],f (η) = (1+β)(1−η)β in the interval 0–1. This distribution
did not take into account the diffractive phenomena. The flat distribution corresponds to
the caseβ = 0.

(c) γ -ray inelasticity: in emulsion chamber experiments, hadrons are detected as cascade
showers. Thus the measured energyE

(γ )

h is related to the hadron energyEh asE(γ )h = KγEh
whereKγ is theγ -ray inelasticty. We use〈Kγ 〉 = 0.25 as the effective inelasticity in the
experiments [15].

(d) Secondary pions: we assume that only the pions are generated in the multiparticle
production, neglecting the particles of small fractions such as kaons, heavy mesons, etc.
The energy spectra of mesons in the laboratory system,fnm(x) and fmm(x) are obtained
from the accelerator data [16] assuming a scaling-type pion production. The expression of
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Figure 6. Integral hadron spectrum at 520 g cm−2. (• from [18]). The full line represents the
calculated flux for〈K〉 = 0.5 and the broken line is the same flux for〈K〉 = 0.63. Both lines
are fora = 0.06.

these spectra are

fnπ(x) = 1.04
1− x
x

e−5x for N + air−→ π + anything (29)

and

fππ(x) = 1.3

x

(
1+ x

0.45

)−3
+ 0.16

x
e2(x−1)for only one charge-pion state. (30)

(e) p–air inelastic cross section: several functional forms have been proposed to fit
the behaviour of rising cross section, among which we adopt the following one in our
calculation

σ = σ0(E/TeV)a. (31)

In figure 1, the cross sections of inelastic interactions between protons and air nuclei
are plotted against energy. Data are from air-shower experiments [11] and from accelerator
experiments [12]. For the last ones,σ(p–p) and σ(p–p) are converted intoσ(p–air) by
the empirical formula of Hillas [13]. Four cases of the power-law energy-dependent cross
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Figure 7. Integral hadron spectrum at 650 g cm−2. (• from [19]). The full line represents the
calculated flux for〈K〉 = 0.5 and the broken line is the same flux for〈K〉 = 0.63. Both lines
are fora = 0.06.

section are shown by full lines for a guide, fora = 0.03, 0.04, 0.06 and 0.10. The best
values area = 0.06 andσ0 = 300 mbarn.

If we use another convertion, for example, that of Kopeliovichet al [14], we continue
to havea = 0.06 butσ0 becomes 293 mbarn.

Figures 2–4 show the comparison of our solution with the integral hadron fluxes
measured at Chacaltaya (540 g cm−2), Kanbala (520 g cm−2) and Fuji (650 g cm−2),
respectively. Three curves ofa = 0, 0.06 and 0.10 are also drawn in the figures for each
depth taking into account the above-mentioned items (a)–(e) and using a flat distribution for
nucleon elasticity. We see in the figures that the experimental data are between the curves
a = 0.06 and 0.10.

Figures 5–7 show the same type of comparison, with the curves ofa = 0.06 and taking
into account the usual mean value of inelasticity coefficient〈K〉 = 0.5 and an arbitrary
nucleon elasticity distribution, with〈K〉 = 0.63. We see that the best agreement in the
three figures is〈K〉 = 0.63.
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6. Discussions and conclusions

We have solved the diffusion equations of cosmic ray nucleons and mesons analytically
using the semigroup theory and taking into account the rising of the cross section with the
energy in a general way. The solutions are written in the compact expression (6) and (14).
These solutions become the simplified forms when we assume a power-law dependence on
energy for the hadron-air cross sections and for the primary energy spectrum. The hadron
fluxes at mountain atmospheric depths decrease when we include in our calculation the
rising of the cross section and the decreasing of the average nucleon elasticity.

Through a comparison with the integral hadron fluxes at mountain altitudes, we have
found that〈K〉 = 0.63 gives a good consistency when we use the best value of the coefficient
a (0.06). Our result is in agreement with that of Jones [20] based in an analysis on inclusive
reactions data from accelerator. There is also an agreement with analytical calculations about
nucleon fluxes at sea level [10, 21].

The hadron fluxes are largely affected when the coefficienta changes in the interval
0.03–0.10. In this case the best fit of our calculation with experimental hadron fluxes is
obtained for〈K〉 changing between 0.72 and 0.45.

The effect on the integral hadron fluxes is very small when we use other well known
values for the nucleon and pion mean-free paths. For example, if we useλ = 83 g cm−2

(σ0 = 293 mbarn) andλπ = 116 g cm−2 (σπ = 1.4σ0) at 1 TeV the best fit, gives
〈K〉 = 0.61 for a = 0.06.
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